3.2.47 \(\int \frac {(a-b x^2)^{5/2}}{\sqrt {a^2-b^2 x^4}} \, dx\)

Optimal. Leaf size=152 \[ -\frac {9 a x \sqrt {a-b x^2} \left (a+b x^2\right )}{8 \sqrt {a^2-b^2 x^4}}-\frac {x \left (a-b x^2\right )^{3/2} \left (a+b x^2\right )}{4 \sqrt {a^2-b^2 x^4}}+\frac {19 a^2 \sqrt {a-b x^2} \sqrt {a+b x^2} \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{8 \sqrt {b} \sqrt {a^2-b^2 x^4}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 152, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {1152, 416, 388, 217, 206} \begin {gather*} -\frac {9 a x \sqrt {a-b x^2} \left (a+b x^2\right )}{8 \sqrt {a^2-b^2 x^4}}-\frac {x \left (a-b x^2\right )^{3/2} \left (a+b x^2\right )}{4 \sqrt {a^2-b^2 x^4}}+\frac {19 a^2 \sqrt {a-b x^2} \sqrt {a+b x^2} \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{8 \sqrt {b} \sqrt {a^2-b^2 x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a - b*x^2)^(5/2)/Sqrt[a^2 - b^2*x^4],x]

[Out]

(-9*a*x*Sqrt[a - b*x^2]*(a + b*x^2))/(8*Sqrt[a^2 - b^2*x^4]) - (x*(a - b*x^2)^(3/2)*(a + b*x^2))/(4*Sqrt[a^2 -
 b^2*x^4]) + (19*a^2*Sqrt[a - b*x^2]*Sqrt[a + b*x^2]*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]])/(8*Sqrt[b]*Sqrt[a^2
 - b^2*x^4])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 416

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1)*(c
 + d*x^n)^(q - 1))/(b*(n*(p + q) + 1)), x] + Dist[1/(b*(n*(p + q) + 1)), Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2)
*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /; F
reeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntB
inomialQ[a, b, c, d, n, p, q, x]

Rule 1152

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + c*x^4)^FracPart[p]/((d + e*x
^2)^FracPart[p]*(a/d + (c*x^2)/e)^FracPart[p]), Int[(d + e*x^2)^(p + q)*(a/d + (c*x^2)/e)^p, x], x] /; FreeQ[{
a, c, d, e, p, q}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\left (a-b x^2\right )^{5/2}}{\sqrt {a^2-b^2 x^4}} \, dx &=\frac {\left (\sqrt {a-b x^2} \sqrt {a+b x^2}\right ) \int \frac {\left (a-b x^2\right )^2}{\sqrt {a+b x^2}} \, dx}{\sqrt {a^2-b^2 x^4}}\\ &=-\frac {x \left (a-b x^2\right )^{3/2} \left (a+b x^2\right )}{4 \sqrt {a^2-b^2 x^4}}+\frac {\left (\sqrt {a-b x^2} \sqrt {a+b x^2}\right ) \int \frac {5 a^2 b-9 a b^2 x^2}{\sqrt {a+b x^2}} \, dx}{4 b \sqrt {a^2-b^2 x^4}}\\ &=-\frac {9 a x \sqrt {a-b x^2} \left (a+b x^2\right )}{8 \sqrt {a^2-b^2 x^4}}-\frac {x \left (a-b x^2\right )^{3/2} \left (a+b x^2\right )}{4 \sqrt {a^2-b^2 x^4}}+\frac {\left (19 a^2 \sqrt {a-b x^2} \sqrt {a+b x^2}\right ) \int \frac {1}{\sqrt {a+b x^2}} \, dx}{8 \sqrt {a^2-b^2 x^4}}\\ &=-\frac {9 a x \sqrt {a-b x^2} \left (a+b x^2\right )}{8 \sqrt {a^2-b^2 x^4}}-\frac {x \left (a-b x^2\right )^{3/2} \left (a+b x^2\right )}{4 \sqrt {a^2-b^2 x^4}}+\frac {\left (19 a^2 \sqrt {a-b x^2} \sqrt {a+b x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x}{\sqrt {a+b x^2}}\right )}{8 \sqrt {a^2-b^2 x^4}}\\ &=-\frac {9 a x \sqrt {a-b x^2} \left (a+b x^2\right )}{8 \sqrt {a^2-b^2 x^4}}-\frac {x \left (a-b x^2\right )^{3/2} \left (a+b x^2\right )}{4 \sqrt {a^2-b^2 x^4}}+\frac {19 a^2 \sqrt {a-b x^2} \sqrt {a+b x^2} \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{8 \sqrt {b} \sqrt {a^2-b^2 x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.20, size = 123, normalized size = 0.81 \begin {gather*} \frac {1}{8} \left (\frac {x \left (2 b x^2-11 a\right ) \sqrt {a^2-b^2 x^4}}{\sqrt {a-b x^2}}+\frac {19 a^2 \log \left (\sqrt {b} \sqrt {a-b x^2} \sqrt {a^2-b^2 x^4}+a b x-b^2 x^3\right )}{\sqrt {b}}-\frac {19 a^2 \log \left (b x^2-a\right )}{\sqrt {b}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a - b*x^2)^(5/2)/Sqrt[a^2 - b^2*x^4],x]

[Out]

((x*(-11*a + 2*b*x^2)*Sqrt[a^2 - b^2*x^4])/Sqrt[a - b*x^2] - (19*a^2*Log[-a + b*x^2])/Sqrt[b] + (19*a^2*Log[a*
b*x - b^2*x^3 + Sqrt[b]*Sqrt[a - b*x^2]*Sqrt[a^2 - b^2*x^4]])/Sqrt[b])/8

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 3.07, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a-b x^2\right )^{5/2}}{\sqrt {a^2-b^2 x^4}} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(a - b*x^2)^(5/2)/Sqrt[a^2 - b^2*x^4],x]

[Out]

Defer[IntegrateAlgebraic][(a - b*x^2)^(5/2)/Sqrt[a^2 - b^2*x^4], x]

________________________________________________________________________________________

fricas [A]  time = 1.32, size = 265, normalized size = 1.74 \begin {gather*} \left [\frac {19 \, {\left (a^{2} b x^{2} - a^{3}\right )} \sqrt {b} \log \left (\frac {2 \, b^{2} x^{4} - a b x^{2} - 2 \, \sqrt {-b^{2} x^{4} + a^{2}} \sqrt {-b x^{2} + a} \sqrt {b} x - a^{2}}{b x^{2} - a}\right ) - 2 \, \sqrt {-b^{2} x^{4} + a^{2}} {\left (2 \, b^{2} x^{3} - 11 \, a b x\right )} \sqrt {-b x^{2} + a}}{16 \, {\left (b^{2} x^{2} - a b\right )}}, \frac {19 \, {\left (a^{2} b x^{2} - a^{3}\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {-b^{2} x^{4} + a^{2}} \sqrt {-b x^{2} + a} \sqrt {-b}}{b^{2} x^{3} - a b x}\right ) - \sqrt {-b^{2} x^{4} + a^{2}} {\left (2 \, b^{2} x^{3} - 11 \, a b x\right )} \sqrt {-b x^{2} + a}}{8 \, {\left (b^{2} x^{2} - a b\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^2+a)^(5/2)/(-b^2*x^4+a^2)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(19*(a^2*b*x^2 - a^3)*sqrt(b)*log((2*b^2*x^4 - a*b*x^2 - 2*sqrt(-b^2*x^4 + a^2)*sqrt(-b*x^2 + a)*sqrt(b)
*x - a^2)/(b*x^2 - a)) - 2*sqrt(-b^2*x^4 + a^2)*(2*b^2*x^3 - 11*a*b*x)*sqrt(-b*x^2 + a))/(b^2*x^2 - a*b), 1/8*
(19*(a^2*b*x^2 - a^3)*sqrt(-b)*arctan(sqrt(-b^2*x^4 + a^2)*sqrt(-b*x^2 + a)*sqrt(-b)/(b^2*x^3 - a*b*x)) - sqrt
(-b^2*x^4 + a^2)*(2*b^2*x^3 - 11*a*b*x)*sqrt(-b*x^2 + a))/(b^2*x^2 - a*b)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (-b x^{2} + a\right )}^{\frac {5}{2}}}{\sqrt {-b^{2} x^{4} + a^{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^2+a)^(5/2)/(-b^2*x^4+a^2)^(1/2),x, algorithm="giac")

[Out]

integrate((-b*x^2 + a)^(5/2)/sqrt(-b^2*x^4 + a^2), x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 105, normalized size = 0.69 \begin {gather*} -\frac {\sqrt {-b \,x^{2}+a}\, \sqrt {-b^{2} x^{4}+a^{2}}\, \left (2 \sqrt {b \,x^{2}+a}\, b^{\frac {3}{2}} x^{3}+19 a^{2} \ln \left (\sqrt {b}\, x +\sqrt {b \,x^{2}+a}\right )-11 \sqrt {b \,x^{2}+a}\, a \sqrt {b}\, x \right )}{8 \left (b \,x^{2}-a \right ) \sqrt {b \,x^{2}+a}\, \sqrt {b}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-b*x^2+a)^(5/2)/(-b^2*x^4+a^2)^(1/2),x)

[Out]

-1/8*(-b*x^2+a)^(1/2)*(-b^2*x^4+a^2)^(1/2)*(2*x^3*b^(3/2)*(b*x^2+a)^(1/2)-11*x*a*b^(1/2)*(b*x^2+a)^(1/2)+19*ln
(b^(1/2)*x+(b*x^2+a)^(1/2))*a^2)/(b*x^2-a)/(b*x^2+a)^(1/2)/b^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (-b x^{2} + a\right )}^{\frac {5}{2}}}{\sqrt {-b^{2} x^{4} + a^{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^2+a)^(5/2)/(-b^2*x^4+a^2)^(1/2),x, algorithm="maxima")

[Out]

integrate((-b*x^2 + a)^(5/2)/sqrt(-b^2*x^4 + a^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a-b\,x^2\right )}^{5/2}}{\sqrt {a^2-b^2\,x^4}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a - b*x^2)^(5/2)/(a^2 - b^2*x^4)^(1/2),x)

[Out]

int((a - b*x^2)^(5/2)/(a^2 - b^2*x^4)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a - b x^{2}\right )^{\frac {5}{2}}}{\sqrt {- \left (- a + b x^{2}\right ) \left (a + b x^{2}\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x**2+a)**(5/2)/(-b**2*x**4+a**2)**(1/2),x)

[Out]

Integral((a - b*x**2)**(5/2)/sqrt(-(-a + b*x**2)*(a + b*x**2)), x)

________________________________________________________________________________________